• Home
  • Farzane Tabatabaee
  • OpenAccess
    • List of Articles Farzane Tabatabaee

      • Open Access Article

        1 - A Review of Mechanical Recycling of Polylactic Acid: Challenges and Recent Achievements
        Farzane Tabatabaee
        The growing use of polylactic acid (PLA) encourages technologists to conduct extensive research into valorization of PLA waste with best quality. In general, mechanical recycling of PLA is one of the most cost-effective recycling methods. However, recycled materials are More
        The growing use of polylactic acid (PLA) encourages technologists to conduct extensive research into valorization of PLA waste with best quality. In general, mechanical recycling of PLA is one of the most cost-effective recycling methods. However, recycled materials are commonly used for minor applications due to the inherent thermo-mechanical degradation of the polymer during recycling, which mainly results in chain scissions and intramolecular and intermolecular transesterification reactions. Therefore, it has a negative effect on the molar mass distribution and consequently on the mechanical, thermal and rheological properties of recycled PLA. In this article, a review of recent research on the effects of mechanical recycling on the properties of PLA including structural, morphological, mechanical, rheological and thermal changes was done. Furthermore, a review of three main ways of valorization of recycled PLA including thermal modification, chemical modifications in the presence of stabilizers, chain extenders, branching agents and finally mixing with nanoadditives or with other polymers was done in order to improve the properties of recycled PLA. Moreover, due to the widespread use of natural fibers to improve the performance of PLA, the recyclability of natural fiber-reinforced PLA biocomposites was investigated. Finally, two important applications of recycled PLA in the food packaging and the 3D printing industries were discussed. Manuscript profile