• Home
  • Mina Alizadehaghdam
  • OpenAccess
    • List of Articles Mina Alizadehaghdam

      • Open Access Article

        1 - Crystallinity of polymers determined by differential scanning calorimetry (II)
        Mina Alizadehaghdam
        Differential scanning calorimetry (DSC) is widely used to determine the crystallinity of semicrystalline polymers. In the two-phase model, the measured heat of fusion is compared to the melting enthalpy of a completely crystalline polymer to get the crystallinity degree More
        Differential scanning calorimetry (DSC) is widely used to determine the crystallinity of semicrystalline polymers. In the two-phase model, the measured heat of fusion is compared to the melting enthalpy of a completely crystalline polymer to get the crystallinity degree. Fusion heat of a polymeric sample is identified by area under the melting endotherm and a baseline. A correct baseline is heat capacity of the semicrystalline sample. It varies with both temperature and crystallinity and is difficult to evaluate. Enthalpy of a process is a state-function quantity and is independent of the process path. In polymer melting, temperature increase and fusion process occur simultaneously. This makes evaluation of the fusion heat challenging. Herein, alternative paths are supposed in which temperature increase and fusion process occur separately and sequentially. This leads to a convenient enthalpy evaluation. Two alternative paths can be defined: first, polymer melts at a constant temperature which is followed by temperature increase of the melt; second, polymer temperature increases without any change in crystallinity degree which is followed by polymer melting at a constant temperature. Lastly, an enthalpy deficiency due to the amorphous-crystalline interface and an excess enthalpy due to the defects present in crystalline regions are investigated how to affect the crystallinity. Manuscript profile