• Home
  • کامپوزیت
  • OpenAccess
    • List of Articles کامپوزیت

      • Open Access Article

        1 - -
        mehrnoush mohammadi
      • Open Access Article

        2 - Polymer composites containing sheep wool fibers using thermal and sound insulation: from introduction to application
        Mohsen Sadroddini
        As a natural and environmentally friendly fiber, sheep wool has an extraordinary place among all textile fibers due to its unique properties such as high thermal insulation properties, good sound insulation and absorption, self-extinguishing, high flame resistance, low More
        As a natural and environmentally friendly fiber, sheep wool has an extraordinary place among all textile fibers due to its unique properties such as high thermal insulation properties, good sound insulation and absorption, self-extinguishing, high flame resistance, low weight and high strength. Sheep wool fibers are traditionally used in clothing and textiles, but they can be used in various applications. One of the vital industrial applications of sheep wool fibers is to employ them as reinforcing fillers in polymer composites using thermal insulation and sound and acoustic absorbers. This review paper aims to introduce sheep wool fiber and present it as a high-performance fiber (HPF) in the role of a natural and low-cost alternative to synthetic polymer fibers. In this regard, an attempt has been made to conduct a comprehensive review of polymer-sheep wool composites as thermal insulation and sound absorber. Manuscript profile
      • Open Access Article

        3 - Polymer metal-organic framework (PolymerMOF) hybrids and composites synthesis techniques and applications
        Mohsen Sadroddini Amin Alamdari
        Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stabil More
        Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Among the most important novel applications of the polymer/MOF hybrids are gas separation and adsorption, ion exchange membranes and nanofiltration, sensors, catalysts, biomedical, etc. The objective of this article is to investigate the hybridization technique of MOFs and polymers, as well as the attractive applications of these hybrid materials. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Manuscript profile
      • Open Access Article

        4 - Modeling the behavior of polymer matrix composite pipes carrying fluid exposed to hydrocarbon fire
        Alireza Rahimi Ehsan Selahi
        Despite the very good mechanical properties of composite materials, the strength of these materials is not suitable for heat resistance. Therefore, due to the increasing use of composite pipes, especially in the oil, gas and petrochemical industries, fire analysis in th More
        Despite the very good mechanical properties of composite materials, the strength of these materials is not suitable for heat resistance. Therefore, due to the increasing use of composite pipes, especially in the oil, gas and petrochemical industries, fire analysis in these pipes is very important. The most important goal of this research was to investigate the effects of fire on the strength of composite pipes and their failure time by performing a numerical thermal-mechanical analysis for a fluid-carrying composite pipe using MATLAB software. At the first step thermal modeling is carried out and heat distribution, due to the hydro carbonian fire, in the composite pipes is determined in terms of the location and time and then in the mechanical modeling stage, the loss of mechanical properties of the composite pipe due to this increase in temperature is calculated and considering the stresses from the fluid inside the pipe as well as thermal stresses have been created, the total stresses have been calculated. This Thermo-Mechanical model has been validated with the results found in valid articles and used to analyze the behavior of a fluid-carrying composite pipe exposed to hydrocarbon fire. Finally, the Tsai–Wu failure theory was employed to determine the failure time of the pipe in the above-mentioned conditions. By estimating the failure time of the composite pipe, it was possible to determine the pressure bearing capacity and failure time of pressurized composite pipes subjected to fire Manuscript profile
      • Open Access Article

        5 - Polymer processes in the light of artificial intelligence
        Zeinab Sadat Hosseini
        Artificial Intelligence (AI) is transforming the daily life of humans on the planet by entering different fields. This tool has opened a new window on the activists in the field of polymer science and engineering, like other sciences, and it can be widely used in the ma More
        Artificial Intelligence (AI) is transforming the daily life of humans on the planet by entering different fields. This tool has opened a new window on the activists in the field of polymer science and engineering, like other sciences, and it can be widely used in the manufacture of polymers and their derivatives, mixing processes, forming polymers, composites, and designing and manufacturing the related equipment. Artificial intelligence algorithms can enable the analysis of a large and unlimited amount of data obtained from sensors and process monitoring systems. These patterns and methods have provided the ability to process cases that are difficult or impossible to detect manually and are used in modeling and simulation, process control, error detection and recommender systems, and can be used to achieve optimal mixing by considering the properties of the mixture components and technical specifications, can be provided recommendations for the desired product. Artificial intelligence can control the process factors to ensure consistency and uniform dispersion of additives, fillers, and colors, resulting in higher quality mixing and products with optimized properties. It can also help reduce the cycle time without compromising product quality, which can lead to significant cost savings and the greater productivity, and can enable preventative maintenance. In this study, the application of artificial intelligence in some polymer processes was investigated, specifically in the rubber compounding, the composite preparation and the extrusion, which promises a new direction in the polymer processes. Manuscript profile