• فهرست مقالات


      • دسترسی آزاد مقاله

        1 - اندازه گیری بلورینگی پلیمرها توسط گرماسنج روبشی تفاضلی
        مینا علیزاده اقدم
        گرماسنج روبشی تفاضلی (DSC) به طور گسترده برای تعیین بلورینگی پلیمرهای نیمه بلورین به کار می رود. گرمای ذوب نمونه پلیمری معمولاً با اندازه گیری مساحت بین منحنی گرماگیر ذوب و خط پایه که به صورت دلخواه و خطی از ابتدا تا پایان منحنی ذوب ترسیم می شود، محاسبه می شود. خط پایه چکیده کامل
        گرماسنج روبشی تفاضلی (DSC) به طور گسترده برای تعیین بلورینگی پلیمرهای نیمه بلورین به کار می رود. گرمای ذوب نمونه پلیمری معمولاً با اندازه گیری مساحت بین منحنی گرماگیر ذوب و خط پایه که به صورت دلخواه و خطی از ابتدا تا پایان منحنی ذوب ترسیم می شود، محاسبه می شود. خط پایه ای که به این صورت تعیین می شود، مفهوم فیزیکی ندارد. خط پایه صحیح در واقع همان ظرفیت حرارتی نمونه نیمه بلورین است که هم با افزایش دما و هم با تغییر بلورینگی تغییر می کند و نمی تواند خطی باشد. لذا در اغلب موارد، نتایج بستگی زیادی به تخمین کاربر از خط پایه صحیح دارد. از مقایسه آنتالپی یا گرمای ذوب اندازه گیری شده با گرمای ذوب پلیمر کاملاً بلورین، درجه بلورینگی نمونه تعیین می شود. باید توجه کرد که آنتالپی، کمیتی وابسته به دما است. ذوب بخش های بلورین نمونه پلیمری در دماهایی متفاوت و پایین تر از دمای ذوب پلیمر کاملاً بلورین انجام می شود. به این ترتیب، مقایسه آنتالپی ذوب نمونه نیمه بلورین و کاملاً بلورین که در دماهای مختلفی تعیین شده اند، صحیح نیست. در این کار، نحوه تعیین یک خط پایه صحیح برای منحنی گرماگیر ذوب در نمودار حرارت دهی DSC و نیز تابعیت دمایی آنتالپی ذوب مورد بررسی قرار می گیرد که منجر به تعیین دقیق تر بلورینگی و تابعیت دمایی آن می شود. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - نانوکامپوزیت های پلیمر/ نقاط کوانتومی و کاربردهای پزشکی آن ها
        فاطمه رفیع منزلت غلامعلي کوهمره
        تاکنون مطالعات زیادی در راستای توسعه نانوکامپوزیت های پلیمر/ نقاط کوانتومی صورت ‌گرفته است. پلیمرهای شفاف در بخش مرئی طیف الکترومغناطیسی می‌توانند با ساختارهای مختلف با هدف فراهم آوردن خواص مکانیکی خوب و حفظ پایداری نوری نقاط کوانتومی در این نانوکامپوزیت ها مورد استفاده چکیده کامل
        تاکنون مطالعات زیادی در راستای توسعه نانوکامپوزیت های پلیمر/ نقاط کوانتومی صورت ‌گرفته است. پلیمرهای شفاف در بخش مرئی طیف الکترومغناطیسی می‌توانند با ساختارهای مختلف با هدف فراهم آوردن خواص مکانیکی خوب و حفظ پایداری نوری نقاط کوانتومی در این نانوکامپوزیت ها مورد استفاده قرار گیرند. نقاط کوانتومی با ابعاد نانومتری دارای ویژگی‌های قابل‌ توجه نوری و الکترونیکی هستند که می‌توان به پایداری نوری، عمر طولانی درخشندگی آنها، طیف جذبی پیوسته و پهن، طیف نشری باریک و بازده کوانتومی فلوئورسانسی بزرگ اشاره کرد. وقتی ‌که ابعاد مواد در مقیاس اتمی کوچک می‌شود و به نقاط کوانتومی تبدیل می‌شوند، خواص آن ها بسیار متفاوت از حالت توده است که فرصت‌های جدیدی را برای کاربردهای متنوع در زمینه پزشکي، زيست محيطي، انر‌‌ژي، کاتالیزور ها، ليزر، انواع حسگرها و آناليزگرها، دیودهای ناشر نور و ... فراهم کرده است. کاربردهايي مانند سامانه‌های رهایش دارو، تصویربرداری زیستی، حسگرها، نورگرمادرمانی و فتودینامیک درمانی، غشاهای پلیمری در جداسازي و تصفيه، سلول هاي خورشيدي و ... جهش هاي نويني را در علوم و صنايع کوانتومي ايجاد کرده اند. در این مقاله، پس از معرفی نقاط کوانتومی، ویژگی ها و روش سنتز آن ها، به نحوه طراحی انواع مختلف نانوکامپوزیت های پلیمر/نقاط کوانتومی پرداخته شده و سپس بر کاربردهای پزشکي آن ها تمرکز خواهیم داشت. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - بررسی و امکان سنجی استفاده از قفس پرورش ماهی پلیمری در صنعت شیلات
        اميرحسين يزدان بخش
        پلیمرها به دلیل خواص مکانیکی خوب و متنوع، چگالی پایین، قیمت مناسب، خواص ویژه عالی و دسترسی آسان به-ویژه در کشور ایران با منابع عظیم نفتی، رفته رفته جای مواد معدنی و فلزی را در صنایع مختلف گرفته‌اند که صنعت شیلات نیز از این قاعده مستثنی نیست. در کشور ایران با توجه به ظرف چکیده کامل
        پلیمرها به دلیل خواص مکانیکی خوب و متنوع، چگالی پایین، قیمت مناسب، خواص ویژه عالی و دسترسی آسان به-ویژه در کشور ایران با منابع عظیم نفتی، رفته رفته جای مواد معدنی و فلزی را در صنایع مختلف گرفته‌اند که صنعت شیلات نیز از این قاعده مستثنی نیست. در کشور ایران با توجه به ظرفیت‌های موجود به ویژه در شمال و جنوب کشور، اجرای طرح پرورش ماهی در قفس از سیاست های مهم و جدی شیلات است. پرورش ماهی در قفس‌های پلی-اتیلن در دهه‌های اخیر با توجه به مزایای خاص خود مورد توجه اکثر کشورهای دنیا قرار گرفته است. در این مقاله به معرفی قفس پرورش ماهی پلی اتیلنی پرداخته شده و همچنین اجزا، عملکرد و مزایای آن شرح داده شده است. با توجه به تنوع خواص پلیمرها، می‌توان در کنار بدنه اصلی پلی اتیلنی، اکثر اجزای دیگر را نیز از دیگر پلاستیک‌ها ساخت و بدین وسیله و با چاشنی ابتکار و نوآوری برخی محدودیت‌های قفس پلی اتیلنی را نیز مرتفع ساخت که این موارد نیز تشریح شده‌اند. همچنین مزایای پلی اتیلن نسبت به ایده‌های دیگر برای ساخت قفس پرورش ماهی (چوب و فولاد) بیان شده و ماتریس مقایسات زوجی معیارهای رقابتی و مقایسه پلی اتیلن با چوب و فولاد گزارش شده و نهايتاً توجيه اقتصادي استفاده از قفس پرورش ماهی پلیمری تبيين شده است. پرونده مقاله
      • دسترسی آزاد مقاله

        4 - تقويت آميخته پلي‌استال-ترموپلاستيک پلي‌يورتان براي استفاده در براکت سپر
        رسول محسن زاده
        پلي استال، پلاستيک مورد استفاده براي ساخت براکت سپر است. ازآن جايي که پلي استال در گروه پلاستيک هاي مهندسي قرار مي گيرد و تمامي گريدهاي آن در توليد قطعات حساس بخش هاي مختلف صنعتي به مصرف مي رسند، مقاومت به ضربه يکي از مهم ترين خواص مورد انتظار از پلي استال ها است. پلي ا چکیده کامل
        پلي استال، پلاستيک مورد استفاده براي ساخت براکت سپر است. ازآن جايي که پلي استال در گروه پلاستيک هاي مهندسي قرار مي گيرد و تمامي گريدهاي آن در توليد قطعات حساس بخش هاي مختلف صنعتي به مصرف مي رسند، مقاومت به ضربه يکي از مهم ترين خواص مورد انتظار از پلي استال ها است. پلي استال با توجه به ريزساختار بلوری و همچنين نوع بافت بلوری خود، در برابر ضربه عملکرد ضعيفي از خود نشان مي دهد. وضعيت وقتي نگران کننده تر مي شود که بدانيم پلي استال در گروه پلاستيک هاي حساس به شکاف (Notched) نيز قرار دارند و چنانچه در زمان توليد يا کاربري، شکافي در قطعه ايجاد شود، مقاومت به ضربه آن نسبت به نمونه بدون شکاف کمتر مي شود. با توجه به اينکه براکت سپر در معرض ضربه قرار دارد، بنابراين چنانچه جنس اين قطعه از نظر چقرمگي بهبود يابد، باعث کاهش آسيب جلوبندي خودرو در تصادفات خواهد شد. از جمله راهکار افزايش چقرمگي پلي‌استال، آميخته‌سازي با لاستیک است. ترموپلاستيک پلي‌يورتان (TPU) به دليل سازگاري مناسب با پلي‌استال، کاربرد بيشتري در آميخته سازي با پلي‌استال و افزايش چقرمگي آن دارد. با‌اين‌حال، افزودن TPU در زمينه پلي‌استال منجر به کاهش استحکام مي‌شود. بنابراین، براي بهبود هم زمان استحکام و چقرمگي، از تقويت کننده‌ها استفاده شده است. تقويت کننده‌هاي استفاده شده در آميخته POM-TPU، شامل الياف شيشه و همچنين نانوذرات همچون نانوذرات خاک رس و نانوذرات کربنات‌کلسيم است. پرونده مقاله
      • دسترسی آزاد مقاله

        5 - مروری بر غشاهای جدید اسمز معکوس و کاربردهای آن
        مهرنوش محمدی
        اسمز معکوس در بین دیگر فرایندهای غشایی محبوبیت بیشتری دارد؛ به طوری که پیش بینی شده است که ارزش بازار جهانی آن تا سال 2026 به 5 میلیارد دلار برسد. عدم استفاده از مواد شیمیایی، مقاومت مکانیکی بالا تعمیر، نگه داری و توسعه آسان از ویژگی های غشای اسمز معکوس است. غشای سلولز چکیده کامل
        اسمز معکوس در بین دیگر فرایندهای غشایی محبوبیت بیشتری دارد؛ به طوری که پیش بینی شده است که ارزش بازار جهانی آن تا سال 2026 به 5 میلیارد دلار برسد. عدم استفاده از مواد شیمیایی، مقاومت مکانیکی بالا تعمیر، نگه داری و توسعه آسان از ویژگی های غشای اسمز معکوس است. غشای سلولزاستات قدیمی ترین نوع غشای اسمز معکوس است که شامل یک لایه بالایی روی یک لایه متخلخل پشتیبان است که با افزایش درجه استیل دار شدن، انتخاب پذیری و شار عبوری از غشا نیز افزایش پیدا می کند. غشای لایه نازک کامپوزیتی در ترکیب با پلی آمید ضعف های غشای سلولزاستات را کاهش داده است. ساختار غشای لایه نازک کامپوزیتی- پلی آمیدی شامل لایه انتخاب پذیر نازک روی پشتیبان متخلخل است. لایه پشتیبان خواص مکانیکی غشا را افزایش می دهد. استفاده از نانوذرات و نانو لوله های کربنی در ساختار غشای لایه نازک می تواند به طور قابل توجهی سبب افزایش شار عبوری از غشا با حفظ میزان حذف املاح شود. نمک زدایی از آب لب شور و دریا، کاهش سختی آب ورودی به دیگ بخار، تصفیه پساب نفتی، حذف فلزات سنگین و... تعدادی از کاربردهای غشای اسمز معکوس است. در این مقاله به جنس، کاربرد و توسعه های اخیر غشاهای اسمز معکوس پرداخته شده است. پرونده مقاله
      • دسترسی آزاد مقاله

        6 - تاملی در برنامه درسی کارشناسی مهندسی بسپار در نظام آموزش عالی ایران: بهره‌گیری از رویکرد CDIO در تربیت مهندس
        علی عباسیان
        شکل‌گیری رشته مهندسی بسپار در دنیا، از یک سو خاستگاه‌های صنعتی داشته و از سوی دیگر به واسطه تلاش‌های پژوهشگران دانشگاهی این حوزه بوده است. اما مسئله اصلی این است که به دلیل همین پراکندگی و فصل مشترکی که حوزه بسپار با سایر حوزه‌ها داشته، برنامه‌های آموزشی ارائه شده در دا چکیده کامل
        شکل‌گیری رشته مهندسی بسپار در دنیا، از یک سو خاستگاه‌های صنعتی داشته و از سوی دیگر به واسطه تلاش‌های پژوهشگران دانشگاهی این حوزه بوده است. اما مسئله اصلی این است که به دلیل همین پراکندگی و فصل مشترکی که حوزه بسپار با سایر حوزه‌ها داشته، برنامه‌های آموزشی ارائه شده در دانشگاه‌ها در این حوزه عموما به صورت گرایشی از علوم دیگر بوده و تنها در چند دهه اخیر بوده است که این رشته به صورت مستقل در دانشگاه‌های دنیا ارائه شده است. همزمان مباحث دیگری نیز برای بازاندیشی رشته‌های مهندسی توسط ابتکاراتی مانند CDIO (کوته‌نوشت concieve (درک)، Design (طراحی)، Implement (پیاده‌سازی) و Operation (اجرا)) مطرح شده است که تمرکز را از پژوهش‌محوری به عملی شدن منتقل کرده است تا به این ترتیب شرایط تربیت نیروی انسانی متخصص برای صنایع فراهم شود. این مطالعه ابتدا با بررسی تاریخچه شکل‌گیری رشته مهندسی بسپار در دانشگاه‌های دنیا، حوزه‌های گوناگون آن را شفاف کرده‌ و با بهینه‌کاوی 61 برنامه آموزش مهندسی بسپار یا گرایش‌های آن از دانشگاه‌های سراسر دنیا حوزه‌های فعلی آموزش بسپارها و همچنین اهداف یادگیری مهندسی بسپار را مشخص کرده است. سپس با انجام یک پیمایش میدانی در میان اساتید دانشکده‌های مهندسی پلیمر، شیمی و مواد دانشگاه‌های ایران، اهداف آموزش بسپار در ایران به لحاظ مطلوبیت (در نیازمندی‌های صنعت) و انطباق (با سرفصل‌های آموزشی فعلی) گردآوری شده است. در نهایت با توجه به نتایج این بررسی‌ها، پیشنهادهای لازم برای بهبود برنامه درسی یکپارچه آموزش مهندسی پلیمر در ایران، از دو منظر ساختار و گرایش‌ها و هم چنین انطباق محتوا با اهداف آموزشی ارائه شده است. پرونده مقاله