مروري بر الاستومرهاي زيست تخريب پذير: سنتز، پيشرفت ها و کاربردهاي زيست پزشکي
محورهای موضوعی : زیست پلاستیک ها و پلیمرهای تجديد پذیرمحمدحسین احمدی 1 , جعفر خادم زاده يگانه 2 *
1 - قم، دانشگاه صنعتي قم، دانشکده فني و مهندسي، گروه مهندسی پليمر
2 - دانشگاه صنعتی قم
کلید واژه: الاستومر, زیست تخریب پذیر, پلي استر, پلي اورتان, زيستپزشکي.,
چکیده مقاله :
الاستومرهاي زيست تخريب پذير مصنوعي، مانند پلي استرها و پلي يورتان ها، استراتژي ها و ابزارهاي درماني زيست پزشکي را متحول نموده اند. با کمک نوآوري در سنتز و فن آوري هاي فراورش، الاستومرهايي زيست تخريب پذير با خواص قابل کنترل و کارکردهاي مختلف توسعه يافته اند. الاستومرهاي زيست تخريب پذير به دليل قابليت کشساني بالا و استحکام ضربه عالي مي توانند تغيير شکل هاي مکرر را در دماي اتاق يا دماي بدن انسان تحمل و بازيابي کنند. بافت انعطاف پذير و خاصيت ارتجاعي الاستومرهاي زيست تخريب پذير آنها را قادر مي سازد تا خواص مکانيکي بافت هاي نرم بومي در بدن را تقليد کنند و خواص مکانيکي مناسب براي ساختارهاي مهندسي بافت ايجاد کنند. در اين بررسي، پيشرفتهاي اخير در سنتز، فناوريهاي فرآيند و کاربردهاي زيستپزشکي الاستومرهاي زيست تخريبپذير که به طور عمده بر پايه پلي استر و پلي اورتان مي باشند، خلاصه شده است. براي برآوردن نيازهاي متنوع کاربردهاي زيست پزشکي، الاستومرهاي زيست تخريب پذير چند منظوره با تنظيم روابط مکانيکي مناسب و رفتارهاي زيست تخريب پذير، بهبود زيست سازگاري و زيست فعالي و همچنين ساخت عملکردهاي هوشمند در حال توسعه هستند. سپس، کاربرد الاستومرهاي زيست تخريب پذير در زمينه مهندسي قلب و عروق، عصب و بافت استخوان، چسب زيستي مرور مي گردد. با وجود پیشرفت قابل توجه، هنوز بین مواد مورد نظر بالینی و الاستومرهای زیست تخریب پذیر گزارش شده از نظر خواص مکانیکی پیچیده و عملکردهای متنوع فاصله وجود دارد.
Biomedical remedial approaches and devices have been transformed by synthetic biodegradable elastomers like polyesters and polyurethanes. A number of biodegradable elastomers and related devices with controllable properties and various functionalities have been created as a result of technological advancements in synthesis and processing. Due to their relatively high maximum elongation and exceptional impact resistance, biodegradable elastomers are capable of withstanding and recovering from repeated deformations at either room temperature or body temperature. Their flexible texture and outstanding elasticity allow them to closely mimic the mechanical characteristics of soft native tissues, providing vital mechanical signals for tissue engineering structures. This study highlights the latest advancements in the synthesis methods, processing technologies, and biomedical applications of biodegradable elastomers which are mainly based on polyester and polyurethane. To meet the diverse needs of biomedical applications, multifunctional biodegradable elastomers are being developed with tailored mechanical properties, controlled biodegradation behavior, improved biocompatibility and bioactivity, as well as the incorporation of smart functionalities. We have then explored the use of biodegradable elastomers across various fields, including cardiovascular, nerve, and bone tissue engineering, as well as their application as bio-adhesives. Despite substantial advances, biodegradable elastomers continue to lack the sophisticated mechanical properties and diverse functionalities necessary for clinical use.
1. Mitragotri S., Lahann J., Physical Approaches to Biomaterial Design, Nature materials , 8,15–23, 2009.
2. Chen S., Wang Y., Yang L., Chu C., Cao S., Wang Z., Xue J., You Z., Biodegradable elastomers for biomedical applications, Progress in Polymer Science , 147, 101763, 2023.
3. Pashuck E., Stevens M., Designing Regenerative Biomaterial Therapies for the Clinic, Science translational medicine , 8, 160-164, 2012.
4. Lakshmi S., Cato T., Biodegradable polymers as biomaterials, Progress in Polymer Science , 32, 762-798, 2007.
5. Nair L., Laurencin C., Polymers as biomaterials for tissue engineering and controlled drug delivery, Advances in biochemical engineering/biotechnology , 102, 47-90, 2006.
6. Ullah S., Chen X., Fabrication, applications and challenges of natural biomaterials in tissue engineering, Applied Materials Today, 20, 100656, 2020.
7. Lutolf M., Hubbell J., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature biotechnology , 23, 47-55, 2005.
8. Bat E., Zhang Z., Feijen J., Grijpma D., Poot A., Biodegradable elastomers for biomedical applications and regenerative medicine, Regenerative medicine, 9, 385-398, 2014.
9. Woodard L., Grunlan M., Hydrolytic degradation and erosion of polyester biomaterials, ACS macro letters , 7, 976-982, 2018.
10. Mabilleau G., Sabokbar A., 7 - In vitro biological test methods to evaluate bioresorbability. Academic, UK , 2008.
11. Ali S., Doherty P., Williams D., The mechanisms of oxidative degradation of biomedical polymers by free radicals, Journal of Applied Polymer Science , 51, 1389-1398, 1994.
12. Wang Y., Ameer G., Sheppard B., Langer R., A tough biodegradable elastomer, Nature biotechnology , 20, 602-606, 2020.
13. Liu G., Hinch B., Beavis A., Mechanisms for the transport of α, ω-dicarboxylates through the mitochondrial inner membrane, Journal of Biological Chemistry , 271, 25338-25344, 1996.
14. Piszko P., Kryszak B., Szustakiewicz, K., Influence of cross-linking time on physico-chemical and mechanical properties of bulk poly (glycerol sebacate). Acta of Bioengineering and Biomechanics, 24(4), 85-93, 2022.
15. Risley B., Ding X., Chen Y., Miller P., Wang Y., Citrate crosslinked poly(Glycerol sebacate) with tunable elastomeric properties, Macromolecular Bioscience , 21, 2000301 , 2021.
16. Perin G., Felisberti M., Enzymatic synthesis of poly(Glycerol sebacate): kinetics, chain growth, and branching behavior, Macromolecules , 53, 7925-7935 , 2020.
17. Nijst C., Bruggeman J., Karp J., Ferreira L., Zumbuehl A., Bettinger C., Langer R., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate), Biomacromolecules , 8, 3067-3073, 2007.
18. Pereira M., Ouyang B., Sundback C., Lang N., Friehs I., Mureli S., Pomerant-seva I., McFadden J., Mochel M., Mwizerwa O., Nido P., Sarkar D., Masiakos P., Langer R., Ferreira L., Karp J., A highly tunable biocompatible and multifunctional biodegradable elastomer, Advanced Materials , 25, 1209-1215, 2013.
19. Zhu C., Kustra S., Bettinger C., Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters, Acta Biomaterialia , 9, 7362-7370, 2013.
20. Ding X, Wu Y., Gao J., Wells A., Lee K., Wang Y., Tyramine functionalization of poly(glycerol sebacate) increases the elasticity of the polymer, Journal of Materials Chemistry B , 5, 6097-6109, 2017.
21. Jia Y., Wang W., Zhou X., Nie W., Chen L., He C., Synthesis and characterization of poly(Glycerol sebacate)-based elastomeric. copolyesters for tissue engineering applications, Polymer Chemistry , 7, 2553-2564, 2016.
22. Patel A., Gaharwar A., Iviglia G., Zhang H., Mukundan S., Mihaila S., Demarchi D., Khademhosseini A., Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers, Biomaterials, 34, 3970-3983, 2013.
23. Zhou L., He H., Jiang C., He S., Preparation and characterization of poly(glycerol sebacate)/cellulose nanocrystals elastomeric composites, Journal of Applied Polymer Science , 132, 42196, 2015.
24. Gaharwar A., Patel A., Dolatshahi-Pirouz A., Zhang H., Rangarajan K., Iviglia G., Shin SR., Hussaine M., Khademhosseini A., Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes, Biomaterials Science , 3, 46-58, 2015.
25. Liu Q., Jiang L., Shi R., Zhang L., Synthesis, preparation, in vitro degradation and application of novel degradable bioelastomers: a review, Progress in Polymer Science , 37, 715-765, 2012.
26. Yang J., Webb A., Ameer G., Novel citric acid-based biodegradable elastomers for tissue engineering, Advanced Materials , 16, 511-516, 2004.
27. Qiu H., Yang J., Kodali P., Koh J., Ameer G., A citric acid-based hydroxyapatite composite for orthopedic implants, Biomaterials, 27, 5845-5854, 2006.
28. Gyawali D., Tran R., Guleserian K., Tang L., Yang J., Citric-acid-derived photo-cross-linked biodegradable elastomers, Journal of Biomaterials Science Polymer Edition , 21, 1761-1782, 2010.
29. Du Y., Yu M., Chen X., Ma P., Lei B., Development of biodegradable poly(citrate)-polyhedral oligomeric silsesquioxanes hybrid elastomers with high mechanical properties and osteogenic differentiation activity, ACS Applied Materials & Interfaces, 8, 3079-3091, 2016.
30. Du Y., Ge J., Shao Y., Ma P., Chen X., Lei B., Development of silica grafted poly(1,8-octanediol-co-citrates) hybrid elastomers with highly tunable mechanical properties and biocompatibility, Journal of Materials Chemistry B , 3, 2986-3000, 2015.
31. Qulub F., Widiyanti P., Ady J., Synthesis and characterization of composite poly(1.8 Octanediol-co-Citrate) (POC)/nano-hydroxyapatite as candidate biodegradable bone screw, Journal of Biomimetics, Biomaterials and Biomedical Engineering , 27, 36-43, 2016.
32. Levi-Polyachenko N., Rosenbalm T., Kuthirummal N., Shelton J., Hardin W., Teruel M., Development and characterization of elastic nanocomposites for craniofacial contraction osteogenesis, Journal of Biomedical Materials Research Part B, 103, 407-416, 2015.
33. Gunatillake P., Adhikari R., Biodegradable polyurethanes: design, synthesis, properties and potential applications. In: Biodegradable polymers: processing, degradation and applications, Academic ,USA, 2011.
34. Ma Z., Hong Y., Nelson D., Pichamuthu J., Leeson C., Wagner W., Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties, Biomacromolecules, 12, 3265-3274, 2011.
35. Hashizume R., Fujimoto K., Hong Y., Guan J., Toma C., Tobita K., Wagner W., Biodegradable elastic patch plasty ameliorates left ventricular ad-verse remodeling after ischemia–reperfusion injury: a preclinical study of a porous polyurethane material in a porcine model, Cardiothoracic surgery, 146, 391, 2013.
36. Ravichandran R., Venugopal J., Sundarrajan S., Mukherjee S., Sridhar R., Ramakrishna S., Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering, International Journal of Cardiology , 167, 1461-1468, 2013.
37. Eilenberg M., Enayati M., Ehebruster D., Grasl C., Walter I., Messner B., Baudis S., Potzmann P., Kaun C., Podesser B., Wojta J., Bergmeister H., Long term evaluation of nanofibrous, bioabsorbable polycarbonate urethane grafts for small diameter vessel replacement in rodents, European Journal of Vascular and Endovascular Surgery , 59, 643-652, 2020.
38. Yan Y., Sencadas V., Jin T., Huang X., Chen J., Wei D., Jiang Z., Tailoring the wettability and mechanical properties of electrospun poly(l-lactic acid)-poly(glycerol sebacate) core-shell membranes for biomedical applications, Journal of Colloid and Interface Science , 508, 87-94, 2017.
39. Wang S., Jeffries E., Gao J., Sun L., You Z., Wang Y., Polyester with pendent acetyl-choline-mimicking functionalities promotes neurite growth, ACS Applied Materials & Interfaces , 8, 9590-9599, 2016.
40. Kerativitayanan P., Tatullo M., Khariton M., Joshi P., Perniconi B., Gaharwar A., Nanoengineered osteoinductive and elastomeric scaffolds for bone tissue engineering, ACS Biomaterials Science & Engineering , 3, 590-600, 2017.
41. Du Y., Yu M., Ge J., Ma P., Chen X., Lei B., Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly(citrates)-based hybrid biodegradable elastomers for bone regeneration, Advanced Functional Materials , 25, 5016-5029, 2015.
42. Tran R., Wang L., Zhang C., Huang M., Tang W., Zhang C., Zhang Z., Jin D., Banik B., Brown J., Xie Z., Bai X., Yang J., Synthesis and characterization of biomimetic citrate-based biodegradable composites, Journal of Biomedical Materials Research Part A , 102, 2521-2532, 2014.
43. Balcioglu S., Parlakpinar H., Vardi N., Denkbas E., Karaaslan M., Gulgen S., Taslidere E., Koytepe S., Ates B., Design of xylose-based semisynthetic polyurethane tissue adhesives with enhanced bioactivity properties, ACS Applied Materials & Interfaces , 8, 4456-4466, 2016.
44. Li Q., Song W, Li J., Ma C., Zhao X., Jiao J., Mrowczynski O., Webb B., Rizk E., Lu D., Liu C., Bioinspired super-strong aqueous synthetic tissue adhesives, Matter , 5, 933-956, 2022.
45. Mahdavi A., Ferreira L., Sundback C., Nichol J., Chan E., Carter D., Bet-tinger C., Patanavanich S., Chignozha L., Ben-Joseph E., Galakatos A., Pryor H., Pomerantseva I., Masiakos P., Faquin W., Zumbuehl A., Hong S., Borenstein J., Vacanti J., Langer R., Karp J., A biodegradable and biocompatible gecko-in-spired tissue adhesive, Proceedings of the National Academy of Sciences of the United States of America , 105, 2307-2312, 2008.