مروری بر جاذبهای بر پایه پلیمر امواج الکترومغناطیسی
محورهای موضوعی : پلیمرها در انرژی و کاربردهای بهداشتی و محیطی
1 - دانشگاه جامع امام حسین ع
کلید واژه: جاذب امواج الکترومغناطیسی, کامپوزیتهای پلیمری, اتلاف دیالکتریک, اتلاف مغناطیسی, پلیمرهای رسانا,
چکیده مقاله :
سازوکارهای اصلی جذب امواج الکترومغناطیسی شامل اتلاف دیالکتریک (قطبش دوقطبی، قطبش بینسطحی، اتلاف رسانایی) و اتلاف مغناطیسی (رزونانس طبیعی و تبادلی، جریانهای گردابی) و اتلاف ساختاری (پراکندگی، بازتابهای داخلی و اثرات حفرهای) هستند که به ترکیب، مورفولوژی و معماری مولکولی وابسته است .پلیمرها بهدلیل چگالی پایین، فرآیندپذیری مناسب، ایجاد پایداری شیمیایی و امکان مهندسی ساختار به گزینهای کارآمد برای استفاده در جاذب امواج الکترومغناطیسی تبدیل شدهاند. با این حال، ماهیت عایق و غیرمغناطیسی بیشتر پلیمرها بهکارگیری فیلرهای رسانا و مغناطیسی را برای ایجاد سازوکارهای اتلاف دیالکتریک و مغناطیسی ضروری میسازد. پلیمرهای متداول به دلیل ایجاد مقاومت در برابر شرایط محیطی، امکان ایجاد چسبندگی مناسب بین اجزاء و سایر سطوح، ایجاد ساختارهای متخلخل و فومی و امکان توزیع و پخش یکنواخت فیلرها، بستر و بایندرهای بسیار مناسبی برای توسعه جاذبهای امواج الکترومغناطیسی محسوب میشوند. پلیمرهای رسانا مانند پلیآنیلین و پلیپیرول نیز با فراهمکردن مسیرهای رسانای قابلتنظیم، نقش فعالی در افزایش اتلاف دیالکتریک ایفا میکنند. مرور پژوهشهای اخیر نشان میدهد پلیمرها بسترهای مناسبی برای تهیه کامپوزیتهای با جذبهای عمیقتر از 40− تا 70− دسیبل و پهنای باند جذب موثر بیش از ۱۰ گیگاهرتز در ضخامتهای بسیار کم هستند. در نتیجه، این مواد گزینههایی ایدهآل برای کاربردهای پیشرفته در حوزه مخابرات و هوافضا محسوب میشوند.
The primary mechanisms of electromagnetic wave absorption are dielectric loss (including dipole polarization, interfacial polarization, and conductive loss), magnetic loss (encompassing natural/exchange resonance and eddy current loss), and structural loss (such as scattering, internal reflections, and cavity effects). The efficiency of these mechanisms is governed by the material's composition, morphology, and molecular architecture.
Polymers have emerged as a highly effective platform for constructing electromagnetic wave absorbers, owing to their low density, excellent processability, chemical stability, and versatile structural engineering potential. However, the inherent insulating and non-magnetic nature of most pristine polymers requires the incorporation of conductive and magnetic fillers to induce the necessary dielectric and magnetic loss. Conventional polymers serve as exceptional substrates and binders, offering environmental resistance, strong interfacial adhesion, the capacity to form porous or foamy structures, and the ability to distribute fillers uniformly.
Conductive polymers, such as polyaniline and polypyrrole, play an active role by providing tunable conductive pathways that significantly enhance dielectric loss. A survey of recent advances demonstrates that polymer-based composites can achieve superior absorption performance, with reflection losses as deep as –70 dB and effective absorption bandwidths exceeding 10 GHz, even at minimal thicknesses. Consequently, these polymer composites are considered ideal candidates for advanced applications in telecommunications and aerospace.
1. Akinay Y., Gunes, U., Çolak, B., and Cetin, T., Recent Progress of Electromagnetic Wave Absorbers: A Systematic Review and Bibliometric Approach. ChemPhysMater, 2, 197-206, 2023.
2. Shahapurkar K., Gelaw, M., Tirth, V., Soudagar, M. E. M., Shahapurkar, P., Mujtaba, M., MC, K., Ahmed, G. M. S. J. P., and Composites, P., Comprehensive Review on Polymer Composites as Electromagnetic Interference Shielding Materials. 30, 09673911221102127, 2022.
3. Wang Y., Zhao, W., Tan, L., Li, Y., Qin, L., and Li, S. J. M., Review of Polymer-Based Composites for Electromagnetic Shielding Application. 28, 5628, 2023.
4. Li Z., Chen, X., Liu, D., Zhou, Y., Pan, D., Shin, S. J. A. C., and Materials, H., Recent Advances in Polymer-Based Composites for Thermal Management and Electromagnetic Wave Absorption. 8, 210, 2025.
5. Yan J., Huang, Y., Liu, X., Zhao, X., Li, T., Zhao, Y., and Liu, P. J. P. R., Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. 61, 646-687, 2021.
6. Pai A. R., Puthiyaveettil Azeez, N., Thankan, B., Gopakumar, N., Jaroszewski, M., Paoloni, C., Kalarikkal, N., and Thomas, S., Recent Progress in Electromagnetic Interference Shielding Performance of Porous Polymer Nanocomposites—a Review. Energies, 15, 3901, 2022.
7. Zhou Y. and Li, H. J. A. A. N. M., Mwcnt-Reinforced Polymethacrylimide Foams for Broadband Electromagnetic Wave Absorption. 7, 13625-13635, 2024.
8. Qi X., Xu, J., Zhong, W., and Du, Y. J. R. A., Synthesis of High Purity Chain-Like Carbon Nanospheres in Ultrahigh Yield, and Their Microwave Absorption Properties. 5, 16010-16016, 2015.
9. Huo J., Wang, L., and Yu, H. J. J. o. m. s., Polymeric Nanocomposites for Electromagnetic Wave Absorption. 44, 3917-3927, 2009.
10. Zhang Y., Yu, H., Wang, L., Jian, S., Hu, H., Zhu, Z., Wang, Y., Lu, Y., and Ouyang, C. J. M. H., Research Progress on Conductive Polymer-Based Microwave Absorption Materials: From Materials Design to Functionalities and Applications. 2025.
11. Islam R., Sood, Y., Mudila, H., Ohlan, A., and Kumar, A. J. J. o. M. C. A., Microwave Absorbing Properties of Polypyrrole-Based 2d Nanocomposites. 12, 31004-31027, 2024.
12. Rahman M. M. and Akhtarul Islam, M., Application of Epoxy Resins in Building Materials: Progress and Prospects. Polymer Bulletin, 79, 1949-1975, 2022.
13. Zhao H., Zhu, Z., Xu, Y., Wang, Z., and Zhou, J. J. R. i. P., Design and Preparation of an Epoxy Resin Matrix Composite Structure with Broadband Wave-Absorbing Properties. 57, 107353, 2024.
14. Açıkalın E., Çoban, K., and Sayıntı, A., Nanosized Hybrid Electromagnetic Wave Absorbing Coatings. Progress in Organic Coatings, 98, 2-5, 2016.
15. Oyharçabal M., Olinga, T., Foulc, M.-P., Lacomme, S., Gontier, E., and Vigneras, V., Influence of the Morphology of Polyaniline on the Microwave Absorption Properties of Epoxy Polyaniline Composites. Composites Science and Technology, 74, 107-112, 2013.
16. Belaabed B., Wojkiewicz, J. L., Lamouri, S., El Kamchi, N., and Lasri, T., Synthesis and Characterization of Hybrid Conducting Composites Based on Polyaniline/Magnetite Fillers with Improved Microwave Absorption Properties. Journal of Alloys and Compounds, 527, 137-144, 2012.
17. Wang H., Zhou, X. J. J. o. A., and Compounds, An Electromagnetic Wave Absorbing Material with Self-Healing Function. 968, 171983, 2023.
18. Hunjra M., Fakhar, M., Naveed, K., Subhani, T. J. J. o. S. S., and Materials, Polyurethane Foam-Based Radar Absorbing Sandwich Structures to Evade Detection. 19, 647-658, 2017.
19. Duan Y., Liu, Y., Cui, Y., Ma, G., and Tongmin, W. J. P. i. O. C., Graphene to Tune Microwave Absorption Frequencies and Enhance Absorption Properties of Carbonyl Iron/Polyurethane Coating. 125, 89-98, 2018.
20. Wang Q., Liu, Y., Ma, Y., Su, E., Su, X. J. J. o. A., and Compounds, Preparation and Electromagnetic Property of Ag@ Fesial/Polyurethane Resin Flexible Absorption Wave Coating. 1021, 179666, 2025.
21. Li J., Ji, H., Li, A., Zhang, J., Yan, Y., Ren, L., and Yu, H., Carbonized Foams from Graphene/Phenolic Resin Composite Aerogels for Superior Electromagnetic Wave Absorbers. Ceramics International, 47, 26082-26091, 2021.
22. Sezer Hicyilmaz A. and Celik Bedeloglu, A. J. S. A. S., Applications of Polyimide Coatings: A Review. 3, 363, 2021.
23. Gouzman I., Grossman, E., Verker, R., Atar, N., Bolker, A., and Eliaz, N. J. A. m., Advances in Polyimide‐Based Materials for Space Applications. 31, 1807738, 2019.
24. Li J., Huang, M., Gao, W., Yao, K., and Ma, H., Graphene/Polyimide Composite Aerogels for Superior Electromagnetic-Wave-Absorbing Materials with High Thermal Stability and Absorption Effectiveness. ACS Applied Polymer Materials, 6, 5662-5673, 2024.
25. Lin T., Yu, H., Wang, L., Fahad, S., Khan, A., Naveed, K.-u.-R., Haq, F., Nazir, A., and Amin, B. U., A Review of Recent Advances in the Preparation of Polyaniline-Based Composites and Their Electromagnetic Absorption Properties. Journal of Materials Science, 56, 5449-5478, 2021.
26. Sun Y., Guo, G., Yang, B., Zhou, X., Cui, H., Liu, Y., and Zhao, G., Synthesis of Polyaniline Microrods with High Microwave Absorption Behaviours. Micro & Nano Letters, 5, 313-316, 2010.
27. Zhang P., Han, X., Kang, L., Qiang, R., Liu, W., and Du, Y. J. R. A., Synthesis and Characterization of Polyaniline Nanoparticles with Enhanced Microwave Absorption. 3, 12694-12701, 2013.
28. Yang C., Li, H., Xiong, D., Cao, Z. J. R., and Polymers, F., Hollow Polyaniline/Fe3o4 Microsphere Composites: Preparation, Characterization, and Applications in Microwave Absorption. 69, 137-144, 2009.
29. Xu P., Han, X., Jiang, J., Wang, X., Li, X., and Wen, A. J. T. J. o. P. C. C., Synthesis and Characterization of Novel Coralloid Polyaniline/Bafe12o19 Nanocomposites. 111, 12603-12608, 2007.
30. Chen K., Xiang, C., Li, L., Qian, H., Xiao, Q., and Xu, F. J. J. o. M. C., A Novel Ternary Composite: Fabrication, Performance and Application of Expanded Graphite/Polyaniline/Cofe 2 O 4 Ferrite. 22, 6449-6455, 2012.
31. Ramesh T., Sadhana, K., and Praveena, K. J. J. o. M. S. M. i. E., Enhanced Microwave Absorbing Properties of Manganese Zinc Ferrite: Polyaniline Nanocomposites. 34, 1245, 2023.
32. Xu D., Zhang, M., Wang, C., Shen, Z., Wang, M., Zhang, J., Han, Z., Li, L., Xiong, X., and Chen, P. J. P., Hollow Conductive Polypyrrole Microtubes as Microwave Absorbents with Good Seawater Corrosion Resistance. 317, 127900, 2025.
33. Yu L., Yu, L., Dong, Y., Zhu, Y., Fu, Y., and Ni, Q. J. J. o. M. S. M. i. E., Compressible Polypyrrole Aerogel as a Lightweight and Wideband Electromagnetic Microwave Absorber. 30, 5598-5608, 2019.
34. Wang L., Gao, S., Li, Z., Shi, X., and Qian, W. J. J. o. M. C. C., Polymerization Interface Design in Wrinkle Ferrite@ Ppy Core-Shell Composites to Boost the Electromagnetic Wave Absorption. 2025.
35. Wu Z., Tan, D., Tian, K., Hu, W., Wang, J., Su, M., and Li, L. J. T. J. o. P. C. C., Facile Preparation of Core–Shell Fe3o4@ Polypyrrole Composites with Superior Electromagnetic Wave Absorption Properties. 121, 15784-15792, 2017.
36. Xu P., Han, X., Wang, C., Zhou, D., Lv, Z., Wen, A., Wang, X., and Zhang, B. J. T. J. o. P. C. B., Synthesis of Electromagnetic Functionalized Nickel/Polypyrrole Core/Shell Composites. 112, 10443-10448, 2008.
37. Shan L., Chen, X., Tian, X., Chen, J., Zhou, Z., Jiang, M., Xu, X., and Hui, D. J. C. P. B. E., Fabrication of Polypyrrole/Nano-Exfoliated Graphite Composites by in Situ Intercalation Polymerization and Their Microwave Absorption Properties. 73, 181-187, 2015.
38. Wu F., Xie, A., Sun, M., Wang, Y., and Wang, M. J. J. o. M. C. A., Reduced Graphene Oxide (Rgo) Modified Spongelike Polypyrrole (Ppy) Aerogel for Excellent Electromagnetic Absorption. 3, 14358-14369, 2015.
39. Lei Y., Ding, M., Wu, H., Yin, D., Li, Y., Jiang, B., Sun, K., Zhang, Y., and Du, H. J. S. M., A Broadband and Strong Microwave Absorption of Ti3c2tx Mxene/Ppy Composites with a Core-Shell Structure. 293, 117254, 2023.
40. Kulkarni G., Kandesar, P., Velhal, N., Phadtare, V., Jatratkar, A., Shinde, S., Kim, D.-Y., and Puri, V., Exceptional Electromagnetic Interference Shielding and Microwave Absorption Properties of Room Temperature Synthesized Polythiophene Thin Films with Double Negative Characteristics (Dng) in the Ku-Band Region. Chemical Engineering Journal, 355, 196-207, 2019.
41. Li Q., Zhang, Z., Qi, L., Liao, Q., Kang, Z., and Zhang, Y. J. A. S., Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures. 6, 1801057, 2019.
42. Savi P., Giorcelli, M., and Quaranta, S., Multi-Walled Carbon Nanotubes Composites for Microwave Absorbing Applications. Applied Sciences, 9, 851, 2019.
43. Sutar R. B., Jamadar, A. S., Patil, S. S., Khandekar, R. V., Yadav, J. B. J. D., and Materials, R., Aniline-Functionalized Rgo/Polyaniline Hybrids: A Synergistic Approach for Enhanced Microwave Absorption. 112437, 2025.
44. Salayong K., Lertwiriyaprapa, T., Torrungrueng, D., Suksai, S., Pongmuksuwan, P., and Kitisatorn, W., Electromagnetic Wave Absorbing Properties of Carbon Black-Filled Natural Rubber Latex. Materials Today: Proceedings, 52, 2444-2448, 2022.
45. Fan W., Li, D.-d., Li, J.-l., Li, J.-z., Yuan, L.-j., Xue, L.-l., Sun, R.-j., and Meng, J.-g., Electromagnetic Properties of Three-Dimensional Woven Carbon Fiber Fabric/Epoxy Composite. Textile Research Journal, 88, 2353-2361, 2018.
46. Houbi A., Aldashevich, Z. A., Atassi, Y., Telmanovna, Z. B., Saule, M., and Kubanych, K., Microwave Absorbing Properties of Ferrites and Their Composites: A Review. Journal of Magnetism and Magnetic Materials, 529, 167839, 2021.
47. Elmahaishi M. F., Azis, R. a. S., Ismail, I., and Muhammad, F. D., A Review on Electromagnetic Microwave Absorption Properties: Their Materials and Performance. Journal of Materials Research and Technology, 20, 2188-2220, 2022.
48. Ma R., Zhao, H., and Zhang, G., Preparation, Characterization and Microwave Absorption Properties of Polyaniline/Co0. 5zn0. 5fe2o4 Nanocomposite. Materials Research Bulletin, 45, 1064-1068, 2010.
49. Dai B., Ma, Y., Dong, F., Yu, J., Ma, M., Thabet, H. K., El-Bahy, S. M., Ibrahim, M. M., Huang, M., Seok, I. J. A. C., and Materials, H., Overview of Mxene and Conducting Polymer Matrix Composites for Electromagnetic Wave Absorption. 5, 704-754, 2022.
50. Wei H., Dong, J., Fang, X., Zheng, W., Sun, Y., Qian, Y., Jiang, Z., and Huang, Y., Ti3c2tx Mxene/Polyaniline (Pani) Sandwich Intercalation Structure Composites Constructed for Microwave Absorption. Composites Science and Technology, 169, 52-59, 2019.
51. Dai B., Ma, Y., Dong, F., Yu, J., Ma, M., Thabet, H. K., El-Bahy, S. M., Ibrahim, M. M., Huang, M., and Seok, I., Overview of Mxene and Conducting Polymer Matrix Composites for Electromagnetic Wave Absorption. Advanced Composites and Hybrid Materials, 5, 704-754, 2022.