List of articles (by subject)


    • Open Access Article

      1 - -
      Zahra Maghsoud
    • Open Access Article

      2 - -
      mohammad reza kalaei
    • Open Access Article

      3 - -
      manochehr vosoughi
    • Open Access Article

      4 - -
      Fatemeh Rafiemanzelat
    • Open Access Article

      5 - -
      Fatemeh Rafiemanzelat gholamali koohmare
    • Open Access Article

      6 - Polyoxymetal / polymer composites An overview of synthesis methods and their properties
      Marziyeh Kavian Milad Ghani Jahan Bakhsh Raoof
      This article gives an overview of the manufacturing method and properties of composites containing polyoxymetals / polymers. Polyoxometals (POMs) are discrete, molecular, metal oxide clusters of various sizes ranging from one to several nanometers that exhibit different More
      This article gives an overview of the manufacturing method and properties of composites containing polyoxymetals / polymers. Polyoxometals (POMs) are discrete, molecular, metal oxide clusters of various sizes ranging from one to several nanometers that exhibit different topologies and diverse chemical and electronic properties. POMs show very strong acidity, which makes them effective acid catalysts for specific reactions such as esterification, hydrolysis, Friedel-Craft alkylation, and tetrahydrofuran ring-opening polymerization. The integration of mineral components with polymer matrices will combine the properties of the mineral phase with polymers and create new functions. Mineral micrometer building blocks have been used to enhance mechanical strength, improve thermal and chemical stability, and improve the performance of polymeric materials. With the rapid development of nanotechnology, polymers can also be used as a substrate for the stabilization of nanostructures, which will eventually have the properties of nanostructures and polymer substrates at the same time. Methods such as physical composition, electrostatic adsorption, covalent bonding, and supermolecular modification are the main methods for combining POM in organic or inorganic polymer matrices (eg silica). Polyoxymetal / polymer composites have various properties such as unique optical, electrical or catalytic properties of polyoxymetals and the optimal processing and stability of polymer matrices. POM/ polymer composites may have many applications in optics, electronics, biology, medicine and catalysis Manuscript profile
    • Open Access Article

      7 - Graphene‑based composite membranes for nanofiltration: performances and future perspectives
      Farzad Mehrjo
      Nanofiltration is one of the most widely used membrane processes for water purification with high practical value because of a large number of chemical species that are separated through this process. Usually, for nanofiltration, high energy–con- suming operations are i More
      Nanofiltration is one of the most widely used membrane processes for water purification with high practical value because of a large number of chemical species that are separated through this process. Usually, for nanofiltration, high energy–con- suming operations are involved including the generation of enough pressure for the rejection of jumps and lower molecular weight chemicals at the surface of the membrane. Recent developments in the synthesis of nanocomposite membranes with graphene and graphene derivatives have led to an increase in energy requirements and the increase in membranes perfor- mances. In the present review, we have presented the recent advances in the field of graphene-based composite membranes for nanofiltration with applications for both types of based solvents—aqueous solutions and organic solvents. The presentation will be focused especially on the performances of membranes and applications of these materials for the rejection of salts (Na+, Mg2+), heavy metals (Li2+), and lower molecular weight organic compounds (methylene blue, Congo red, Direct Red, Methyl orange, Reactive green 13, etc.). Modern synthesis methods like interfacial polymerization for obtaining thin-film composite nanofiltration membranes are also presented. Nanofiltration is one of the most widely used membrane processes for water purification with high practical value because of a large number of chemical species that are separated through this process. Manuscript profile
    • Open Access Article

      8 - A review of the sorbents based on covalent organic frameworks containing hybrids for extraction methods
      Mohammad Javad Aghajani Milad Ghani Jahan Bakhsh Raoof
      Covalent organic frameworks have been used as a group of porous organic frameworks due to their remarkable intrinsic properties, such as high specific surface area and variable pore size as well as high stability. Also, they are flexible that by producing functional cov More
      Covalent organic frameworks have been used as a group of porous organic frameworks due to their remarkable intrinsic properties, such as high specific surface area and variable pore size as well as high stability. Also, they are flexible that by producing functional covalent organic frameworks or polystructures based on them, major changes in their physical and chemical properties can be made. In this article, several important groups of covalent organic frameworks are examined in terms of their design and manufacturing methods. Also, synergism of covalent organic frameworks with other materials, such as different types of magnetic nanoparticles, metal/metal oxide, silica, carbon nanomaterials, polymers, polyoxometalates and metal-organic frameworks are studied. Finally, recent applications of covalent organic frameworks as efficient adsorbents in sample preparation methods such as solid phase extraction, diffusion solid phase extraction, magnetic solid phase extraction and fibrous solid phase microextraction with emphasis on important factors that lead to increased efficiency It will be extracted and will be checked. Investigations have shown that hybrid formation of organic-covalent frameworks and other compounds, including polymers, can be effective in improving the performance of these compounds. It is important to note that an essential step during the synthesis of covalent organic frameworks is their design concept. The purpose of design is the specific orientation of covalent bonds between the functional groups of constituents (node ​​and linker), types of bonds and types of topologies with pore sizes that require engineering. In addition, the challenges in these approaches will also be discussed. Manuscript profile
    • Open Access Article

      9 - Emerging and advanced membrane technology for wastewater treatment: A review
      Farzad Mehrjo MohammadSaber Baghkhanipour Amir Alam
      Over the years, conventional wastewater treatment processes have achieved to some extent in treating effluents for discharge pints. Development in wastewater treatment processes is essential to make treated wastewater reusable for industrial, agricultural, and domestic More
      Over the years, conventional wastewater treatment processes have achieved to some extent in treating effluents for discharge pints. Development in wastewater treatment processes is essential to make treated wastewater reusable for industrial, agricultural, and domestic purposes. Membrane technology has emerged as an ideal technology for treating wastewater from different wastewater streams. Membrane technology is one of the most up‐to‐date advancements discovered to be successful in fundamentally lessening impurities to desired levels. In spite of having certain impediments, membrane bioreactors (MBRs) for biological wastewater treatment provide many advantages over conventional treatment. This review article covers all the aspects of membrane technology that are widely used in wastewater treatment process such as the principle of membrane technology, the classification of membrane technology processes in accordance to pressure, concentration, electrical and thermal‐driven processes, its application in different industries, advantages, disadvantages and the future prospective. Over the years, conventional wastewater treatment processes have achieved to some extent in treating effluents for discharge pints. Development in wastewater treatment processes is essential to make treated wastewater reusable for industrial, agricultural, and domestic purposes. Membrane technology has emerged as an ideal technology for treating wastewater from different wastewater streams. Membrane technology is one of the most up‐to‐date advancements discovered to be successful in fundamentally lessening impurities to desired levels. In spite of having certain impediments, membrane bioreactors (MBRs) for biological wastewater treatment provide many advantages over conventional treatment. Manuscript profile
    • Open Access Article

      10 - Application of Bio-nanocomposites in Food Packaging
      Fatemeh Savojbolaghi Mahshid Maroufkhani
      The need for food packaging to maintain quality and shelf life is increasing day by day. Nanostructured materials are preferred over microstructures due to their unique physical and chemical properties and improved performance. Advanced packaging based on nanotechnology More
      The need for food packaging to maintain quality and shelf life is increasing day by day. Nanostructured materials are preferred over microstructures due to their unique physical and chemical properties and improved performance. Advanced packaging based on nanotechnology has made it possible to preserve and transport food safely without changing the taste and quality. In addition, it prevents contamination and preserves the mechanical, physiological, physical and chemical properties of food. Various nanomaterials have been used in food packaging to prepare improved, active, smart and bio-based packaging. Smart packaging ensures food safety by detecting contamination, gases, humidity, temperature and other food parameters using sensors. With the increasing demand for the production of new, environmentally friendly and high-performance packaging, "bio-nanocomposites" have attracted a lot of attention in recent years. Bio-nanocomposites are bio-based polymers that consist of two main components, one acting as a matrix called biopolymer (continuous phase) and the second as a reinforcing agent (dispersed phase) with dimensions ranging from 1 to 100 nm. . Bio-based packaging is a new and new generation packaging that replaces natural polymers with synthetic plastics. In this article, recent research in the field of bio-nanocomposites has been reviewed based on the application for different needs and the possible risk of nanoparticle migration. Manuscript profile
    • Open Access Article

      11 - A review of methods for determining contact stress in polymer base gears
      Rasool Molhsenzadeh
      Basically, gears are an evolved form of friction wheels that have teeth added to them to prevent slippage and ensure relative motion uniformity. The use of polymer gears is increasing due to advantages such as corrosion resistance, injection molding capability, operatio More
      Basically, gears are an evolved form of friction wheels that have teeth added to them to prevent slippage and ensure relative motion uniformity. The use of polymer gears is increasing due to advantages such as corrosion resistance, injection molding capability, operation without lubricants and low noise. However, the mechanical strength, thermal resistance and durability of polymer gears are lower than metal gears. The locking mechanism in metal gears is different from polymer gears. Among the important damages that lead to failure of polymer gears is thermal deformation, which does not exist in metal gears. In polymer gears, due to the viscoelastic and plastic nature of polymers, a lot of heat is generated during gear engagement and the temperature increases. An increase in temperature causes the ribs to soften and, as a result, change their shape. Pitting, fatigue and wear are other factors that lead to failure of polymer gears. The contact stress resulting from the torque applied to the gear plays the most important role in the intensity of each of the mentioned delays. Investigating the contact stress in polymer gears, including the challenges of industrialists and researchers, will provide a better understanding for the better design of these types of gears, as well as life expectancy. This research is a review of various methods for determining and checking contact stress, including Hertz numerical model, standard method and finite element method. Manuscript profile
    • Open Access Article

      12 - Chemicals and Additives Used in the Rubber Industry
      mehri nadiri niri
      The scope of application of elastomers is largely due to their ability to be combined with a large number of chemicals and additives such as softening aids, vulcanizing chemicals, aging protectors, fillers, softeners, sponging agents and so on. Basically, the nature of More
      The scope of application of elastomers is largely due to their ability to be combined with a large number of chemicals and additives such as softening aids, vulcanizing chemicals, aging protectors, fillers, softeners, sponging agents and so on. Basically, the nature of an elastomer determines the main properties of the product from which the elastomer is prepared, but these properties can be significantly changed by using the types of materials mentioned above and their different amounts in the product formula. On the other hand, chemicals and fillers affect the behavior of elastomeric mixtures during mixing and processing and make their vulcanization possible, also, they make it possible to change the properties of vulcanized mixtures on a large scale and use them in many applications. A mixologist often uses all the opportunities and facilities available to him in order to more easily achieve to the desired characteristics in a mixture. Achieving these characteristics requires a high level of knowledge about chemicals and additives used in the preparation of a compound. Considering the importance of chemicals in the rubber industry, in this article we tried to describe comprehensively the types of chemicals needed to make rubber, including rubbers, fillers, softeners, activators, antioxidants, curing agents and process aids. Manuscript profile
    • Open Access Article

      13 - Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review
      Farzad Mehrjo MohammadSaber Baghkhanipour Amir Alam
      The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal More
      The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane’s properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime. membrane. Repeated cleaning of the membrane influences its lifetime. Manuscript profile
    • Open Access Article

      14 - MOFCOF composites a review of synthesis methods and applications
      Milad Ghani Marziyeh Kavian
      In the past decades, porous materials have attracted a lot of attention in physics, chemistry and materials science. Among various compounds, metal-organic frameworks (Metal organic frameworks, MOFs) and covalent organic frameworks (COFs), as crystalline porous material More
      In the past decades, porous materials have attracted a lot of attention in physics, chemistry and materials science. Among various compounds, metal-organic frameworks (Metal organic frameworks, MOFs) and covalent organic frameworks (COFs), as crystalline porous materials, were developed at a very high speed. MOFs are a subgroup of porous compounds in which organic ligands are connected together with metal cations. COFs are two- or three-dimensional organic solids with extended structures in which the building blocks are connected by strong covalent bonds. These compounds have unique advantages including well-defined and tunable structures, large surface area, high porosity, and ease of framework modification, which make them ideal host substrates for various guests including polymers, metal oxide nanoparticles, and semiconductors to create Converts MOF or COF-based multistructures. Compared to single-component compounds, polycomposites always show new properties due to their synergistic effects. Therefore, to further improve their performance and expand their applications, many efforts have been made to design and fabricate various MOF or COF-based multi-structures. Therefore, in this study, the integration of MOFs and COFs, their manufacturing methods, and the applications of these multiple structures will be investigated. Moreover, the capability of the prepared sorbents in various fields such as sorbent, catalysis and other format will be discussed. Metal–organic frameworks (MOFs) are a class of compounds consisting of metal clusters (also known as SBUs) coordinated to organic ligands to form one-, two-, or three-dimensional structures. Manuscript profile
    • Open Access Article

      15 - A Review on the Mechanical Properties of Carbon Nanotubes Reinforced Polymer Composites
      Ahdieh Amjadi Fereshteh Barragh Jam
      Advances in the synthesis and industrial production of carbon nanomaterials, particularly carbon nanotubes (CNTs) have been widely used in the polymer materials industry in the past few decades, leading to the creation of a group of carbon nanotube-reinforced polymer co More
      Advances in the synthesis and industrial production of carbon nanomaterials, particularly carbon nanotubes (CNTs) have been widely used in the polymer materials industry in the past few decades, leading to the creation of a group of carbon nanotube-reinforced polymer composites that exhibit the potential to be used in several applications, such as military, transportation, aerospace, automotive, and sports equipment. The advantageous thermal, electrical, and mechanical properties of CNTs, in conjunction with their low density, which encourages researchers to use them in making polymer composites. Polymeric composites have been welcomed by many researchers and industrialists due to their special properties including low weight, favorable mechanical properties and diverse production processes compared to other types of composites and other engineering materials. On the other hand, CNTs are unique as mechanical reinforcement components for structural applications due to their nanometer dimensions and extraordinary strength. Therefore, in this review study, an attempt has been made to examine the researches carried out in the field of mechanical properties of polymer composites reinforced with CNT. The implications of several factors affecting mechanical properties of CNT reinforced polymer composites such as amount, shape, and contact area of the reinforcing agents with the polymer matrix, have been highlighted. Manuscript profile
    • Open Access Article

      16 - Polymer metal-organic framework (PolymerMOF) hybrids and composites synthesis techniques and applications
      Mohsen Sadroddini Amin Alamdari
      Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stabil More
      Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Among the most important novel applications of the polymer/MOF hybrids are gas separation and adsorption, ion exchange membranes and nanofiltration, sensors, catalysts, biomedical, etc. The objective of this article is to investigate the hybridization technique of MOFs and polymers, as well as the attractive applications of these hybrid materials. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Manuscript profile
    • Open Access Article

      17 - Polymer processes in the light of artificial intelligence
      Zeinab Sadat Hosseini
      Artificial Intelligence (AI) is transforming the daily life of humans on the planet by entering different fields. This tool has opened a new window on the activists in the field of polymer science and engineering, like other sciences, and it can be widely used in the ma More
      Artificial Intelligence (AI) is transforming the daily life of humans on the planet by entering different fields. This tool has opened a new window on the activists in the field of polymer science and engineering, like other sciences, and it can be widely used in the manufacture of polymers and their derivatives, mixing processes, forming polymers, composites, and designing and manufacturing the related equipment. Artificial intelligence algorithms can enable the analysis of a large and unlimited amount of data obtained from sensors and process monitoring systems. These patterns and methods have provided the ability to process cases that are difficult or impossible to detect manually and are used in modeling and simulation, process control, error detection and recommender systems, and can be used to achieve optimal mixing by considering the properties of the mixture components and technical specifications, can be provided recommendations for the desired product. Artificial intelligence can control the process factors to ensure consistency and uniform dispersion of additives, fillers, and colors, resulting in higher quality mixing and products with optimized properties. It can also help reduce the cycle time without compromising product quality, which can lead to significant cost savings and the greater productivity, and can enable preventative maintenance. In this study, the application of artificial intelligence in some polymer processes was investigated, specifically in the rubber compounding, the composite preparation and the extrusion, which promises a new direction in the polymer processes. Manuscript profile