پلیپروپیلن در عصر نانو: مروری بر نقش نانولولههای کربنی در بازآفرینی خواص نانوکامپوزیتها
محورهای موضوعی : پليمرها و نانوفناوری
محدثه سرلک
1
,
شقایق دباغ عالی نسب
2
,
پدرام منافی
3
*
1 - 1 ماهشهر، دانشگاه صنعتی امیرکبیر، پردیس ماهشهر، گروه مهندسی پلیمر، صندوق پستی 13178-63517
2 - 1 ماهشهر، دانشگاه صنعتی امیرکبیر، پردیس ماهشهر، گروه مهندسی پلیمر، صندوق پستی 13178-63517
3 - 1 ماهشهر، دانشگاه صنعتی امیرکبیر، پردیس ماهشهر، گروه مهندسی پلیمر، صندوق پستی 13178-63517
کلید واژه: پلی پروپیلن, نانولولههای کربنی , خواص مکانیکی, پراکندگی نانوذرات, فرآینداختلاط مذاب,
چکیده مقاله :
پلیپروپیلن (PP) بهعنوان یکی از پرمصرفترین پلیمرهای ترموپلاستیک، به دلیل ویژگیهایی نظیر چگالی پایین، قیمت مناسب، پایداری شیمیایی، مقاومت در برابر رطوبت، فرآیندپذیری آسان و خواص مکانیکی قابل قبول، در طیف گستردهای از صنایع شامل بستهبندی، لوازم خانگی، تجهیزات پزشکی، خودروسازی و منسوجات کاربرد دارد. با این حال، وجود برخی محدودیتها از جمله مقاومت مکانیکی نسبتاً پایین، اشتعالپذیری بالا و هدایت حرارتی و الکتریکی ضعیف، استفاده از آن را در کاربردهای پیشرفتهتر با چالشهایی مواجه کرده است. برای رفع این نواقص، استفاده از فناوری نانو و افزودن نانوذرات مختلف بهویژه نانولولههای کربنی (CNTs) به ماتریس پلیپروپیلن بهعنوان یک راهکار مؤثر مطرح شده است. CNTها به دلیل ساختار استوانهای، نسبت ابعاد بالا، سطح ویژه زیاد و خواص منحصربهفرد، قادرند بهطور چشمگیری خواص فیزیکی، مکانیکی، حرارتی و الکتریکی پلیمر را بهبود دهند. این مقاله مروری با هدف بررسی تأثیر پارامترهای مختلف از جمله نوع CNT (تکدیواره یا چنددیواره)، درصد وزنی بهینه، روشهای اصلاح سطحی، نحوه پراکندگی و تکنیکهای فرآیند اختلاط بر خواص نهایی نانوکامپوزیتهای PP/CNT تدوین شده است. همچنین اثر این عوامل بر ریزساختار، فرآیند تبلور، مدول یانگ، استحکام کششی، پایداری ابعادی، رسانایی، مقاومت ضربهای و رفتار رئولوژیکی مورد بررسی قرار گرفته است. نتایج مطالعات نشان میدهد که در صورت بهینهسازی شرایط، این نانوکامپوزیتها میتوانند در حوزههای پیشرفتهای نظیر هوافضا، الکترونیک، پزشکی و خودرو کاربرد مؤثری داشته باشند.
Polypropylene (PP), as one of the most widely used thermoplastic polymers, has found extensive applications in various industries such as packaging, household appliances, medical devices, automotive components, and textiles due to its low density, cost-effectiveness, chemical stability, moisture resistance, ease of processing, and acceptable mechanical properties. However, certain limitations—such as relatively low mechanical strength, high flammability, and poor thermal and electrical conductivity—pose challenges for its use in advanced engineering applications. To address these deficiencies, the incorporation of nanotechnology, particularly the addition of carbon nanotubes (CNTs), into the PP matrix has emerged as an effective approach. Owing to their cylindrical structure, high aspect ratio, large specific surface area, and unique physical characteristics, CNTs can significantly enhance the physical, mechanical, thermal, and electrical properties of the polymer.
This review article aims to investigate the influence of various parameters—including CNT type (single-walled or multi-walled), optimal weight fraction, surface modification methods, dispersion techniques, and processing methods—on the final properties of PP/CNT nanocomposites. Moreover, the effects of these factors on microstructure, crystallization behavior, Young’s modulus, tensile strength, dimensional stability, conductivity, impact resistance, and rheological performance are discussed. The findings of numerous studies indicate that, through proper optimization of processing conditions and composite formulation, PP/CNT nanocomposites can become highly promising candidates for advanced applications in aerospace, electronics, medical technology, and the automotive industry.
1. Choudhary, V.; Gupta, A. Polymer/Carbon Nanotube Nanocomposites. Carbon Nanotube. Polym. Nanocomposite.2011, 2011, 65–90.
2. Soni, S.K.; Thomas, B.; Thomas, S.B.; Tile, P.S.; Sakharwade, S.G. Carbon nanotubes as exceptional nanofillers in polymer and polymer/fiber nanocomposites: An extensive review. Mater. Today Commun. 2023, 37, 107358.
3. Ghanbari, A.; Heuzey, M.-C.; Carreau, P.J. Polyethylene terephthalate/organoclay nanocomposites: Improvement of morphology and viscoelastic properties by using a chain-extender. Appl. Clay Sci. 2022, 225, 106551.
4. Meng, Z.; Lu, S.; Zhang, D.; Liu, Q.; Chen, X.; Liu, W.; Guo, C.; Liu, Z.; Zhong, W.; Ke, Y. Grafting macromolecular chains on the surface of graphene oxide through crosslinker for antistatic and thermally stable polyethylene terephthalate nanocomposites RSC Adv. 2022, 12, 33329–3339.
5. Hossain, M. T., Shahid, M. A., Mahmud, N., Habib, A., Rana, M. M., Khan, S. A., & Hossain, M. D. (2024). Research and application of polypropylene: a review. Discover Nano, 19(1), 2.
6. Zaporotskova, I.V. Uglerodnye i Neuglerodnye Nanomaterialy i Kompozitnye Struktury na Ikh Osnove: Stroenie i Elektronnye Svoistva [Carbon and Non-Carbon Nanotubes and Composite Structures on Their Basis: Structure and Electronic Properties]; Izd-vo VolGU: Volgograd, Russia, 2009; p. 490.
7. Kim, G.M.; Kil, T.; Lee, H.K. A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites. Compos. Struct. 2021, 258, 113377.
8. Elbakyan, L.; Zaporotskova, I. Composite Nanomaterials Based on Polymethylmethacrylate Doped with Carbon Nanotubes and Nanoparticles: A Review. Polymers 2024, 16, 1242.
9. Sahli, M.L.; Barriere, T.; Roizard, X.; Assoul, M. Investigating mechanical, thermal and rheological properties of polypropylene/carbon nanotubes composites. Microsyst. Technol. 2020, 26, 3023–3027.
10. . Mi, D.; Zhao, Z.; Bai, H. Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Polymers 2023, 15, 2370.
11. Martínez-Colunga, J.G.; Cruz-Delgado, V.J.; Sánchez-Valdés, S.; Mata-Padilla, J.M.; Valle, L.F.R.-D.; Espinoza-Martínez, A.B.; Benavides, R.; Ramírez-Vargas, E.; Rodriguez-Gonzalez, J.A.; Lara-Sanchez, J.F.; et al. Application of ultrasonic radiation for the development of polypropylene/multi-walled carbon nanotubes nanocomposites and its effect on the PP chemical degradation. Iran. Polym. J. 2024, 33, 1751–1764
12. Plueddemann, E.P. Silane Coupling Agents, 2nd ed.; Plenum Press: New York, NY, USA, 1991.
13. Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multiwalled carbon nanotubes and graphene nanoplatelets. Nano Mater Sci. 2022;4(3):185-204.
14. Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multiwalled carbon nanotubes and graphene nanoplatelets. Nano Mater Sci. 2022;4(3):185-204.
15. Stanciu, N.-V.; Stan, F.; Sandu, I.-L.; Fetecau, C.; Turcanu, A.-M. Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites. Polymers 2021, 12, 187.
16. Stanciu, N.-V.; Stan, F.; Sandu, I.-L.; Fetecau, C.; Turcanu, A.-M. Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites. Polymers 2021, 12, 187.
17. Yosomiya, R.; Morimoto, K.; Nakajima, A.; Ikada, Y.; Suzuki, T.; Dharan, C.K.H. Adhesion and Bonding in Composites. J. Eng. Ind. 1991, 113, 117.
18. 4. Meng, Z.; Lu, S.; Zhang, D.; Liu, Q.; Chen, X.; Liu, W.; Guo, C.; Liu, Z.; Zhong, W.; Ke, Y. Grafting macromolecular chains on the surface of graphene oxide through crosslinker for antistatic and thermally stable polyethylene terephthalate nanocomposites RSC Adv. 2022, 12, 33329–3339.
19. . Su X, Wang R, Li X, et al. A comparative study of polymer nanocomposites containing multiwalled carbon nanotubes and graphene nanoplatelets. Nano Mater Sci. 2022;4(3):185-204.
20. . Yetgin SH. Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropyl-ene. J Mater Process Technol. 2019;8(5):4725-4735.
21. Kang, D.; Hwang, S.; Jung, B.; Shim, J. Characterizations of Polypropylene/Single-Walled Carbon Nanotube Nanocomposites Prepared by the Novel Melt Processing Technique with a Controlled Residence Time. Processes 2021, 9, 1395.
22. Stan, F.; Turcanu, A.-M.; Fetecau, C. Analysis of Viscoelastic Behavior of Polypropylene/Carbon Nanotube Nanocomposites by Instrumented Indentation. Polymers 2020, 12, 2535.
23. Mi, D.; Zhao, Z.; Bai, H. Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Polymers 2023, 15, 2370.
24. Zaccone, M.; Armentano, I.; Cesano, F.; Scarano, D.; Frache, A.; Torre, L.; Monti, M. Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites. Polymers 2020, 12, 1685.
25. Coppola, B.; Di Maio, L.; Incarnato, L.; Tulliani, J.-M. Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring. Nanomaterials 2020, 10, 814.
26. Elbakyan, L.; Zaporotskova, I.; Hayrapetyan, D. Nanocomposite Material Based on Polyvinyl Alcohol Modified with Carbon Nanotubes: Mechanism of Formation and Electronic Energy Structure. J. Compos. Sci. 2024, 8, 54.
27. Kaushal, A.; Singh, V. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites. Polym. Compos. 2022, 43, 3708–3715.
28. Kaushal, A.; Singh, V. Electromagnetic interference shielding response of multiwall carbon nanotube/polypropylene nanocomposites prepared via melt processing technique. Polym. Compos. 2021, 42, 1148–1154
29. Tudose, I.V.; Mouratis, K.; Ionescu, O.N.; Romanitan, C.; Pachiu, C.; Tutunaru-Brincoveanu, O.; Suchea, M.P.; Koudoumas, E. Comparative Study of Graphene Nanoplatelets and Multiwall Carbon Nanotubes-Polypropylene Composite Materials for Electromagnetic Shielding. Nanomaterials 2022, 12, 2411.
30. Coppola, B.; Di Maio, L.; Incarnato, L.; Tulliani, J.-M. Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring. Nanomaterials 2020, 10, 814.