List of articles (by subject)


    • Open Access Article

      1 - Review on the Polysulfone Based Membranes for Separation of Low-Density Lipoprotein from Blood
      Rahim Dehghan Jalal Barzin Behnam Darabi Hamidreza Ghaderi
      Cardiovascular diseases are the most common cause of fatality all over the world. A severe increase of low-density lipoprotein (LDL) concentration in blood is recognized as the main cause of coronary artery disease (CAD) and atherosclerosis. LDL apheresis from blood is More
      Cardiovascular diseases are the most common cause of fatality all over the world. A severe increase of low-density lipoprotein (LDL) concentration in blood is recognized as the main cause of coronary artery disease (CAD) and atherosclerosis. LDL apheresis from blood is one of the extracorporeal options for patients suffering from this disorder which drug therapy is not effective for them. LDL apheresis is classified in cascade filtration and adsorption-based methods. In this study further reviewing all LDL apheresis techniques, polysulfone (PSU) membranes for selective adsorption of LDL were investigated. By inspiring from inherent LDL receptor (LDLR) of body, different methods including heparinization of PSU membrane by various methods such as chloromethylation, treatment with ammonia plasma and co-deposition of polydopamine and polyethyleneimine can be used for adsorption of LDL from the blood. Also, membrane ionic glycosylation by click chemistry and grafting of alginate sulfate on the surface of PSU membrane to adsorption of LDL were reviewed. To investigate surface modification accuracy, different analyses such as X-ray photo spectroscopy (XPS), Attenuated total reflectance Fourier transform infrared (ATR-FTIR), -Potential and water contact angle are used. Blood compatibility is another factor for the development of these membranes for defined application. Manuscript profile
    • Open Access Article

      2 - Polymer Networks as Hierarchical Porous Carbon Materials: Synthesize, Properties and Applications
      ziba shirini kordabadi Fatemeh Rafiemanzelat
      Porous materials have different types of pores in the micro, meso or nano range, each of which plays a special role in porous materials application. Among these materials, porous carbon materials have a special share due to their unique properties such as: mechanical, c More
      Porous materials have different types of pores in the micro, meso or nano range, each of which plays a special role in porous materials application. Among these materials, porous carbon materials have a special share due to their unique properties such as: mechanical, chemical and thermal stability and their reasonable price. There are two main methods for synthesizing porous carbon materials: 1) template method and 2) pyrolysis/activation method. The template method is basically time consuming and tedious due to the use of the template and removal of template. Thus the method of pyrolysis/activation is widely used to prepare porous carbon materials from porous polymer precursers or waste and biomass materials in the presence of the physical and chemical active agents. Replacement of heteroatoms including: N, O, B, S and P in carbon materials leads to increased efficiency and development of their new applications; For example, the use of porous N-doped carbon materials as electrodes in superconducting cells increases the efficiency of energy storage and in the field of adsorbents materials increases the efficiency of CO2 uptake. Due to their unique properties, especially high surface area, low weight and high adsorption capacity, porous carbon materials are used in hydrogen storage, contaminants removal fron air air water, electrodes and as catalyst support. Manuscript profile
    • Open Access Article

      3 - Investigation of Blood Coagulation Process on Biopolymers and Review on the Hemocompatibility Evaluation Methods
      Rahim Dehghan Jalal Barzin Seyed Hossein  Abtahian Behnam Darabi Hamidreza Ghaderi
      The use of biopolymers in the development of biomedical devices has extended in recent years. These devices are including prosthetic heart valves catheter, cardiovascular stents, artificial arteries, peacemakers, hemodialysis membranes, etc. Hemocompatibility is taken i More
      The use of biopolymers in the development of biomedical devices has extended in recent years. These devices are including prosthetic heart valves catheter, cardiovascular stents, artificial arteries, peacemakers, hemodialysis membranes, etc. Hemocompatibility is taken into account as one of the essential cases of biopolymers for biomedical applications. Knowing biopolymer-blood interaction is very considerable for the development of a hemocompatible biopolymer. Various factors can undergo the hemocompatibility of biopolymers. Surface properties such as hydrophilicity, surface energy, and electrostatic charge are the most important factor for the control of hemocompatibility. In this study, further blood coagulation mechanism on the biopolymers, evaluation methods of hemocompatibility is investigated. Methods include protein adsorption which is the first phenomenon of the blood coagulation process, investigation of kallikrein activity which evaluates intrinsic coagulation pathway, assessment of coagulation times such as thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) which monitor extrinsic, intrinsic and common pathway of blood coagulation, hemolysis of erythrocytes, microscopy analysis of cell adhesion, platelet adhesion and activation. Change in platelet morphology is one of the main criteria for the investigation of blood compatibility. Finally, a hemocompatible polymer should pass all mentioned blood compatibility analyses. Herein, besides i Manuscript profile
    • Open Access Article

      4 - Self-Healing Polymer Electrolytes used in Lithium-Ion Batteries
      Maral Ghahramani Mobina Razani
      Lithium-ion batteries, as one of the most advanced and suitable rechargeable batteries, have received considerable attention in recent years. Polymer electrolytes are considered as one of the main components of the battery and good substitute for liquid electrolytes in More
      Lithium-ion batteries, as one of the most advanced and suitable rechargeable batteries, have received considerable attention in recent years. Polymer electrolytes are considered as one of the main components of the battery and good substitute for liquid electrolytes in the next generations of batteries. The polymer electrolytes used in the battery may be damaged or lose performance due to the alternating movement of ions or physical damage. To avoid the damages caused by this phenomenon, the use of self-healing polymer electrolytes is suggested as a appropriate solution. The ability of self-healing in the polymer electrolytes makes them start to repair themselves as soon as a craze or crack occurs on their surface, without the need for any stimulus, and even after repair, they are able to recover all their properties. This ability comes from the microstructure and type of chemical bonds of self-healing polymers. In general, the self-healing polymer electrolytes used in batteries are divided into two main categories: polymer electrolytes based on reversible covalent bonds, and polymer electrolytes based on non-covalent supramolecular bond type. Considering the importance of this issue, in this research, a review of self-healing polymer electrolytes in the next generation of lithium batteries will be done. Manuscript profile
    • Open Access Article

      5 - Polymer inclusion membranes for the extraction of rare earth elements
      Zahra Daneshfar
      The demand for rare earth elements has increased significantly due to potential industrial applications such as catalysts, magnets, battery alloys, ceramics. However, the separation and recovery of rare earth metals are very difficult due to their similar chemical prope More
      The demand for rare earth elements has increased significantly due to potential industrial applications such as catalysts, magnets, battery alloys, ceramics. However, the separation and recovery of rare earth metals are very difficult due to their similar chemical properties and ionic radius, so progress in the separation process of these elements will bring many global benefits. Among the improved methods, the membrane technique has received much attention as a stable method with easy operation in the separation of such metals, and several membranes have been designed for separation. This article provides a summary of the types of membranes in the separation of rare earth elements in terms of extraction performance, transfer efficiency, and membrane stability. Polymer inclusion membranes are a new generation of non-liquid membrane that is made by a simple method of casting a solution containing liquid phases (carrier, plasticizer /modifier) and base polymers. Polymer inclusion membranes due to the possibility of simultaneous extraction and back-extraction, high selectivity, excellent stability, reusability, simple applicability, relatively low cost, and low energy consumption, it provides a great advantage in both the separation and purification of metal ions. Therefore, in this study, an overview of the PIMs reported in the studies to date is presented and the performance, permeability and stability of the membrane are discussed according to the base polymer, carrier, plasticizer and modifiers used. Manuscript profile
    • Open Access Article

      6 - Different fabrication methods and ideal properties of scaffolds for tissue engineering applications.
      Mohammad Rasouli Soheila Kashanian
      Tissue engineering is a science that uses the combination of scaffolds, cells and active biomolecules to make a tissue in order to restore or maintain the function and improve the damaged tissue or even an organ in the laboratory. Artificial skin and cartilage are among More
      Tissue engineering is a science that uses the combination of scaffolds, cells and active biomolecules to make a tissue in order to restore or maintain the function and improve the damaged tissue or even an organ in the laboratory. Artificial skin and cartilage are among the engineered tissues that have been approved by the US Food and Drug Administration (FDA) for clinical use. Accuracy in the design and fabrication of scaffolds with ideal properties such as biocompatibility, biodegradability, mechanical and surface properties is very important for applications in tissue engineering. Furthermore, these techniques should be able to translate the fabricated scaffolds from potential to actual applications. Several fabrication technologies have been used to design ideal 3D scaffolds with controlled nano- and micro-structures to achieve the ultimate biological response. This review highlights the applications and ideal parameters (biological, mechanical and biodegradability) of scaffolds for various biomedical and tissue engineering applications. This review discusses in detail the various design methods developed and used to design scaffolds, namely solvent casting/particle leaching, freeze drying, thermally induced phase separation (TIPS), gas foaming. (GF), powder foam, sol-gel, electrospinning, stereolithography (SLA), fused deposition modeling (FDM), selective laser sintering (SLS), jet binder technique, inkjet printing, laser-assisted bioprinting, writing It reviews direct cell and metal-based additive manufacturing, focusing on their advantages, limitations, and applications in tissue engineering. Manuscript profile